29 research outputs found

    “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus

    Get PDF
    Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology (“SulfoSYS”)-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the “–omics” approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics

    Reactions to UV damage in the model archaeon Sulfolobus solfataricus

    No full text
    Mechanisms involved in DNA repair and genome maintenance are essential for all organisms on Earth and have been studied intensively in bacteria and eukaryotes. Their analysis in extremely thermophilic archaea offers the opportunity to discover strategies for maintaining genome integrity of the relatively little explored third domain of life, thereby shedding light on the diversity and evolution of these central and important systems. These studies might also reveal special adaptations that are essential for life at high temperature. A number of investigations of the hyperthermophilic and acidophilic crenarchaeote Sulfolobus solfataricus have been performed in recent years. Mostly, the reactions to DNA damage caused by UV light have been analysed. Whole-genome transcriptomics have demonstrated that a UV-specific response in S. solfataricus does not involve the transcriptional induction of DNA-repair genes and it is therefore different from the well-known SOS response in bacteria. Nevertheless, the UV response in S. solfataricus is impressively complex and involves many different levels of action, some of which have been elucidated and shed light on novel strategies for DNA repair, while others involve proteins of unknown function whose actions in the cell remain to be elucidated. The present review summarizes and discusses recent investigations on the UV response of S. solfataricus on both the molecular biological and the cellular levels

    Shedding light on biofilm formation of Halobacterium salinarum R1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells.

    No full text
    Early and mature biofilm formation in the extremely halophilic euryarchaeon Halobacterium salinarum strain R1 was characterized by SWATH-LC/MS/MS. Using a simple surfactant-assisted protein solubilization protocol and one-dimensional ultra-high performance nanoflow chromatography on the front end, 63.2% and 58.6% of the predicted Hbt. salinarum R1 proteome could be detected and quantified, respectively. Analysis of biophysical protein properties, functional analysis and pathway mapping indicated comprehensive characterization of the proteome. Sixty point eight percent of the quantified proteins (or 34.5% of the predicted proteome) exhibited significant abundance changes between planktonic and sessile states, demonstrating that haloarchaeal biofilm formation represents a profound "lifestyle change" on the molecular level. Our results and analysis constitute the first comprehensive study to track molecular changes from planktonic cultures to initial and mature archaeal biofilms on the proteome level. Data are available via ProteomeXchange, identifier PXD003667. Proteins exemplifying different protein expression level profiles were selected, and their corresponding gene transcripts targeted by qRT-PCR to test the feasibility of establishing rapid PCR-based assays for archaeal biofilm formation

    Bluejay 1.0: genome browsing and comparison with rich customization provision and dynamic resource linking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses.</p> <p>Results</p> <p>Bluejay 1.0 is a genome viewer integrating genome annotation with: (i) gene expression information; and (ii) comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i) numerous display customization features; (ii) the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii) the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding.</p> <p>Conclusion</p> <p>Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes.</p
    corecore